Construction of a reference gene association network from multiple profiling data: application to data analysis
نویسندگان
چکیده
MOTIVATION Gene expression profiling is an important tool for gaining insight into biology. Novel strategies are required to analyze the growing archives of microarray data and extract useful information from them. One area of interest is in the construction of gene association networks from collections of profiling data. Various approaches have been proposed to construct gene networks using profiling data, and these networks have been used in functional inference as well as in data visualization. Here, we investigated a non-parametric approach to translate profiling data into a gene network. We explored the characteristics and utility of the resulting network and investigated the use of network information in analysis of variance models and hypothesis testing. RESULTS Our work is composed of two parts: gene network construction and partitioning and hypothesis testing using sub-networks as groups. In the first part, multiple independently collected microarray datasets from the Gene Expression Omnibus data repository were analyzed to identify probe pairs that are positively co-regulated across the samples. A co-expression network was constructed based on a reciprocal ranking criteria and a false discovery rate analysis. We named this network Reference Gene Association (RGA) network. Then, the network was partitioned into densely connected sub-networks of probes using a multilevel graph partitioning algorithm. In the second part, we proposed a new, MANOVA-based approach that can take individual probe expression values as input and perform hypothesis testing at the sub-network level. We applied this MANOVA methodology to two published studies and our analysis indicated that the methodology is both effective and sensitive for identifying transcriptional sub-networks or pathways that are perturbed across treatments.
منابع مشابه
Mapping of TP53 protein network using cytoscape software
TP53 acts as a tumor suppressor in cancer. It induces cell cycle arrest or apoptosis in response to cellular stress and damage. p53 gene alteration could cause uncontrolled cell proliferation.In the present study, we used TP53 gene as the seed in the construction of a protein-protein functional association network to identify genes that might involve in tumorgenesis process with TP53. TP53 prot...
متن کاملEfficiency evaluation of wheat farming: a network data envelopment analysis approach
Traditional data envelopment analysis (DEA) models deal with measurement of relative efficiency of decision making units (DMUs) in which multiple-inputs consumed to produce multiple-outputs. One of the drawbacks of these models is neglecting internal processes of each system, which may have intermediate products and/or independent inputs and/or outputs. In this paper some methods which are usab...
متن کاملIdentification of miR-24 and miR-137 as novel candidate multiple sclerosis miRNA biomarkers using multi-staged data analysis protocol
Many studies have investigated misregulation of miRNAs relevant to multiple sclerosis (MS) pathogenesis. Abnormal miRNAs can be used both as candidate biomarker for MS diagnosis and understanding the disease miRNA-mRNA regulatory network. In this comprehensive study, misregulated miRNAs related to MS were collected from existing literature, databases and via in silico prediction. A multi-staged...
متن کاملSequence Analysis and Phylogenetic Profiling of the Nonstructural (NS) Genes of H9N2 Influenza A Viruses Isolated in Iran during 1998-2007
The earliest evidences on circulation of Avian Influenza (AI) virus on the Iranian poultry farms date back to 1998. Great economic losses through dramatic drop in egg production and high mortality rates are characteristically attributed to H9N2 AI virus. In the present work non-structural (NS) genes of 10 Iranian H9N2 chicken AI viruses collected during 1998-2007 were fully sequenced and subjec...
متن کاملAn Irregular Lattice Pore Network Model Construction Algorithm
Pore network modeling uses a network of pores connected by throats to model the void space of a porous medium and tries to predict its various characteristics during multiphase flow of various fluids. In most cases, a non-realistic regular lattice of pores is used to model the characteristics of a porous medium. Although some methodologies for extracting geologically realistic irregular net...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 23 20 شماره
صفحات -
تاریخ انتشار 2007